Приветствую Вас, Гость! Регистрация RSS
Суббота, 2024-12-28
Главная » 2018 » Октябрь » 28 » Линейные операторы. В 3-томах
19:53
Линейные операторы. В 3-томах

Линейные операторы. В 3-томах — Книга написана четким языком и снабжена многочисленными упражнениями; она может поэтому служить учебником по теории линейных операторов. Книга доступна студентам старших курсов математических факультетов университетов и пединститутов; студенты и аспиранты, специализирующиеся по теоретической физике найдут в книге много полезного материала, поскольку теория линейных операторов является основным аппаратом современной физики (квантовая механика и квантовая теория поля).
Для специалистов книга послужит исчерпывающим справочником.

Название: Линейные операторы. В 3-томах
Автор: Данфорд Н., Шварц Дж.Т.
Издательство: Мир
Год: 1962, 1966, 1974
Страниц: 896+1064+664
Формат: DJVU
Размер: 44,68 МБ
Качество: отличное
Язык: русский

Содержание:

Содержание и описание:

Том I. Общая теория
Первый том содержит подготовительный материал: теоретико-множественные, топологические и алгебраические понятия, основные принципы линейного анализа, теорию интегрирования и функций множеств. Далее идут примеры специальных пространств, обзор слабых топологий, теория операторов и общая спектральная теория. Последняя глава первого тома посвящена некоторым приложениям (полугруппы и эргодическая теория). Том снабжен огромной библиографией, доведенной до последних лет.
Том II. Спектральная теория
Книга посвящена многочисленным применениям теории линейных операторов к различным вопросам анализа, в частности, общей теории ограниченных и неограниченных самосопряженных операторов, спектральной теории симметрических обыкновенных дифференциальных операторов и операторов с частными производными. Изложение построено таким образом, что читателю почти не приходится прибегать к другим источникам, в том числе и к первому тому.
Том III. Спектральные операторы
Третий том посвящен спектральным операторам - важному классу несамосопряженных операторов. В нем систематически излагается теория этих операторов, рассматривается вопрос об их месте в общей теории, изучаются волновые операторы.

Категория: Разное | Просмотров: 161 | Добавил: Gunpowder
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]